

Flood Impact Assessment

for

Newcastle Airport, Williamtown

for Newcastle Airport Pty Limited

Level 1, 215 Pacific Highway Charlestown NSW 2290 02 4943 1777 newcastle@northrop.com.au ABN 81 094 433 100

Contents

Acronyms
Introduction4
Methodology5
Proposed Development
Flood Model Setup
Flood Behaviour
Conclusion15
Appendix A – Critical Duration Maps
Appendix B – Base Case Flood Maps
Appendix C – Developed Case Flood Maps
Appendix D – Pre-to-Post Comparison Developed Case

Appendix E – Developed Case with Mitigation Measures Flood Maps

Appendix F - Pre-to-Post Comparison Developed Case with Mitigation Measures

Appendix G – Modelled Burst and Pre-Burst Rainfall Depths

Appendix H - Mitigation Options

Acronyms

AEP	Annual Exceedance Probability
AHD	Australian Height Datum
ALS	Airborne Laser Survey (LiDAR)
AR&R 2019	Australian Rainfall and Runoff 2019
BoM	Bureau of Meteorology
DTM	Digital Elevation Model
GPU	Graphics Processing Unit
HPC	Heavy Parallelised Computation
Lidar	Light Detection and Ranging (also see ALS)
m	Measure of length / height / distance (metres)
m AHD	Meters above Australian High Datum
m/s	Measure of velocity (metres per second)
m³/s	Measure of flow rate (cubic metres per second)
OEH	Office of Environment and Heritage
RAFTS	Hydrologic modelling software
TUFLOW	A 1D and 2D hydraulic modelling software

Introduction

Northrop Consulting Engineers have been engaged by Newcastle Airport Pty Limited (NAPL) to prepare a Flood Impact Assessment for the proposed development of the existing Apron and Taxiway areas.

This flood impact assessment aims to review the impact the proposed modifications have on flood behaviour and develop measures to mitigate the potential impact within the vicinity of the proposed works and downstream areas, specifically this report only assesses the impacts and associated flood mitigation opportunities on the western and southern sides of the apron and downstream through the Domestic Airport Terminal precinct. We understand impacts to the north and east of the new apron works have been separately assessed by others.

This assessment has been prepared with the consideration of the following guidelines, reports and documents:

- Australian Rainfall and Runoff 2019 (AR&R 2019).
- Flood Risk Management Manual (NSW Government 2023).
- Williamtown/ Salt Ash Flood Study Review (BMT WBM 2012).
- Civil Drawings provided by NAPL.

This report has been prepared to support a Development Application for submission to Port Stephens Council.

			Date
	Prepared by	RB	27/11/2023
ľ	Checked by	GB	27/11/2023
ľ	Admin	BBR	27/11/2023
Î	NL182640-11 / 27 Noven	nber 2023	

Methodology

This flood impact assessment has been undertaken using the following procedure:

- Desktop review of all available information including design plans and latest survey data.
- Site visit to ground truth conditions of existing drainage network.
- Setup a two-dimensional TUFLOW hydraulic model to quantify flood behaviour in Base Case scenario (existing conditions + approved developments) and Developed Case for 1% AEP, 1% AEP Climate Change, 5% AEP and 10% AEP flood events.
- Comparison of the Base and Developed Case results to review the flood impact due to the proposed modifications.
- Develop flood mitigation measures to eliminate or minimise the flood impact.
- Comparison of the Base and Developed Case with flood mitigation measures to review the impact.

Proposed Development

The extent of the proposed development is presented in **Figure 1** below. The proposed works include partial re-grading of the existing apron surface and an increase of paved surface adjacent to the existing apron and taxiway.

The civil design surface including proposed open drains (swales) and below ground pipe is presented in **Figure 2** overleaf.

Figure 1 - Proposed Modifications Extent

Legend Cadastre Modelled Existing and Approved SW Network Impact assessed by others Proposed SW Pipes Proposed Terminal Expansion Boundary Apron Design Surface(mAHD) <= 3.5 3.5 - 3.7 3.7 - 4.0 4.0 - 4.2 4.2 - 4.4 4.4 - 4.7 > 4.7 > 4.7 Figure 2 Proposed Development			
0 50 100 Metres 1:3,000 Figure 2 Proposed Development Newcastle Airport Williamtown	Leg	end Cadastre Modelled Approved Impact as Proposed Expansion on Design S <= 3.5 3.5 - 3.7 3.7 - 4.0 4.0 - 4.2 4.2 - 4.4 4.4 - 4.7 > 4.7	Existing and SW Network sessed by others SW Pipes Terminal a Boundary Surface(mAHD)
Figure 2 Proposed Development	0	50	100 Metres
Newcastle Airport Williamtown		Proposed	Figure 2 d Development
Newcastle Airport Williamtown			
		NOF	Wewcastle Airport Williamtown

Flood Model Setup

Modelling has been undertaken using RAFTS hydrological and two-dimensional TUFLOW hydraulic software packages. **Figure 3** below presents the setup of the hydrological and hydraulic models that have been prepared for Newcastle Airport and contributing upstream catchments.

Hydrology

The RAFTS Laurenson hydrological model, coupled with the Initial and Continuing Loss model has been used for this assessment. As per the AR&R 2019 guidelines, initial loss, continuing loss, storm pre-burst and design burst rainfall have been considered in this assessment. The input data for the RAFTS model used in this assessment includes sub-catchment data, design rainfall, catchment (hydrologic) roughness and the initial and continuing losses. These are summarised below.

The RAFTS model extends into the Tilligery State Conservation Area and Galloping Swamp and has been constructed using a series of links and nodes. A total of 12 sub-catchments were delineated using LiDAR terrain survey. The modelled sub-catchments are shown in the **Figure 3**, and the sub-catchments characteristics are outlined in the **Table 1** below.

Catchment Reference	Area (ha)	Effective Impervious (%)	Slope (%)	Catchment Reference	Area (ha)	Effective Impervious (%)	Slope (%)
C01	691	10	1	C07	40	42	1
C02	452	0	2	C08	39	0	1
C03	205	10	2	C09	35	40	1
C04	120	0	2	C10	30	0	2
C05	46	0	1	C11	17	0	1
C06	45	0	1	C12	16	30	1

Table 1 – RAFTS Sub-Catchments

Burst and Pre-Burst Rainfall

The latest AR&R 2019 rainfall has been obtained from the Bureau of Meteorology while the accompanying rainfall temporal patterns have been obtained from the AR&R Data Hub for a location over the study area. AR&R 2019 recommends the use of the storm ensemble method using 10 temporal patterns for each storm duration. For this investigation, standard storm durations from 10 minutes to 48 hours were assessed in the hydrological model. Modelled burst rainfall input data are listed in Table G1 of **Appendix G**.

The latest NSW Specific Transformational Pre-Burst depths has also been used as part of the investigation. As recommended by the latest AR&R 2019 guidelines, the 60min pre-burst depths have been used for storm durations less than 60 minutes. Modelled pre-burst rainfall depths are outlined in Table G2 of **Appendix G**.

Infiltration Losses and Roughness

The Initial and Continuing Loss model has been used for this study, and the latest AR&R 2019 storm losses were obtained from the AR&R Data Hub for a location over the study area. The below **Table 2** presents the Initial and Continuing losses obtained from the ARR Data Hub and the corresponding modelled loss rates. The latest OEH guidelines recommend reducing the continuing loss values provided by the ARR Data Hub by a factor 0.4 for un-calibrated models within NSW. Modelled continuing losses have been reduced accordingly.

Land Use	Initial Loss (mm)	Continuous Loss (mm/hr
ARR Data Hub Losses	13.0	2.7
Modelled Pervious Losses	13.0	1.1
Modelled Impervious Losses	1.5	0.0

Table 2 – Infiltration Loss Rates

The following catchment (hydrological) roughness values have been adopted in the modelling:

- Pervious from 0.060 to 0.190 (grass, bushland, dense vegetation).
- Impervious 0.015 (sealed roads, concrete surfaces).

Hydraulics

The two-dimensional model boundary is presented in the **Figure 3** with the model extending from the upstream reaches of Newcastle Airport to the culverts beneath Cabbage Tree Road, Nelson Bay Road and Medowie Road.

The Digital Terrain Model used for the two-dimensional model has been prepared using a combination of one-metre resolution LiDAR elevation data captured over the Williamtown area in 2013, detailed surveys of Newcastle Airport, the Astra Aerolab development and the general vicinity, and project design surfaces. Some additional minor surface modifications were also entered into the TUFLOW model manually to update the LiDAR elevation data to include observations made from aerial imagery and during site visits.

A model grid size of 1.5 metres x 1.5 metres was adopted for the two-dimensional model and run using the latest version of TUFLOW's (2020-10-AD) Heavily Parallelised Compute (HPC), Graphics Processing Unit (GPU) module.

The pit and pipe network has been included in the TUFLOW model with the below ground network for Newcastle Airport and the Cabbage Tree Road, Nelsons Bay Road and Medowie Road culvert crossings represented.

Upstream runoff, modelled in the RAFTS hydrologic model, enters the 2D hydraulic area in the three specified inflow locations (refer to **Figure 3**).

Direct Rainfall (rainfall-on-grid) model has been applied for the 2D model extent. The direct rainfall includes burst and pre-burst rainfall data.

Adopted Manning's hydraulic roughness are presented below in Tables 3.

Table 3 – TUFLOW Manning's n Roughness

Land Use	Manning's n
Low grass, cultivated land	0.045
Bushland, dense shrubs	0.100
Minor drainage channel	0.040
Sealed roads and concrete surface	0.014
High grass, swamps	0.065
Open water	0.025
Major drainage channel	0.030
Development Area (Astra Aero Lab Stage 1)	0.023

Downstream boundary conditions were sourced from the Williamtown/ Salt Ash Flood Study (BMT WBM 2012). Fixed water levels of 1.1mAHD, 0.9mAHD and 0.6mAHD were applied for 1%, 5% and 10% AEP flood events, respectively.

Buildings were incorporated into the model based on building footprints and were delineated using aerial imagery and site observations. All buildings within the model were "blocked out" (i.e., impermeable). Rainfall on buildings has been accounted for in the TUFLOW model by using boundary features to calculate the runoff from each building, allocating the calculated flow around the perimeter of each building. This method has ensured that all rain falling on the building roofs has been accounted for and represented as contributing to overland flow.

The following three scenarios have been considered in the TUFLOW modelling:

- Base Case scenario is a combination of existing conditions and approved Newcastle Airport developments. The approved carpark/pond filling was included in the model as a design surface with proposed pit and pipe network. The approved (currently under construction) Terminal Building Expansion and Site Works footprint was modelled as 100% impervious surface (refer to Figure 2).
- Developed Case scenario is a combination of the Base Case and the proposed apron modifications.
- Developed Case with Flood Mitigation Measures scenario includes the Developed Case plus proposed flood mitigation works.

Climate Change 2100 sensitivity was considered in this assessment. Rainfall depth increase of 20% was modelled for the 1% AEP for all cases.

Flood Behaviour

Critical Duration

To determine the critical storm duration the guidance provided in the latest AR&R 2019 guidelines was considered as summarised below:

- Classification of the median value of the ten temporal patterns for each storm duration.
- Selection of the duration that produces the maximum median value for each return interval.

A water elevation parameter was used in this investigation to define the highest median value.

All ten rainfall patterns from 10-minute to 48-hour standard storm durations were used to determine the critical storm duration for each of the 1%, 5% and 10% AEP flood events base case conditions.

The two-dimensional TUFLOW modelling indicates that typically the 20-minute, 1, 2, 3 and 6-hour durations were critical for 1% AEP while the 15, 20-minute, 1.5 and 6-hour durations were critical for the 5% AEP across the proposed development and general vicinity. The 15-minute, 1, 1.5 and 6-hour durations was determined to be critical for the 10% AEP.

The 1%. 5% and 10% AEP critical duration maps are presented in **Figure A1, A2** and **A3** of **Appendix A**, respectively.

Base Case

Modelled maximum envelope flood depth and elevation are presented in **Figure B1-B4** of **Appendix B** for the Base Case conditions for the 1%, 5%, 10% AEP and 1% AEP Climate Change flood events.

Developed Case and Impact

Modelled maximum envelope flood depth and elevation are presented in **Figure C1-C4** of **Appendix C** for the Developed Case for the 1%, 5%, 10% AEP and 1% AEP Climate Change flood events.

Flood elevation differences for the Developed versus Base Cases are presented in **Figures D1-D4** of **Appendix D** for the 1%, 5%, 10% AEP and 1% AEP Climate Change flood events.

Pre-to-post development 1% AEP flood elevation comparison demonstrates an increase in flood elevation approximately up to 49 millimetres in the area adjacent to the western boundary of the proposed apron (refer to **Figure D1**). An increase approximately up to 26 millimetres is observed downstream of the western end of the proposed apron. Insignificant increases up to 13mm are also observed in the approved pond filling/carpark and along existing downstream channels.

Similarly, increases approximately up to 58mm, 63mm and 35mm are observed in the vicinity of the western end of the development for the 5%, 10%, and 1% AEP Climate Change, respectively.

These increases are expected to be typically due to a loss of flood storage as result of the apron development.

Flood Mitigation Measures

Proposed flood mitigation measures and locations are presented in **Figure 4** below and in **Appendix J** (Civil Drawings) and include the following set of works:

Legend Cadastre Modelled SW Netw Proposed Expansion Proposed Apron Design 9 <= 3.5 3.5 - 3.7 3.7 - 4.0 4.0 - 4.2	Base Case ork SW Pipes Terminal n Boundary Comp Cut Surface(mAHD)
4.2 - 4.4 4.4 - 4.7 > 4.7 • Flood Mit	igation Locations
0 40	80 Metres
Propose Flood Mitiga	Figure 4 d Development ation Measures
	Newcastle Airport Williamtown
	RTHROP

- Widening (approximately 8m to 15m wide) the proposed western swale and extending it approximately 16m upstream and downstream. This will increase flood storage capacity in the area adjacent to the western apron fill.
- Installing an additional pit (0.9m x 0.9m grated) and 2 x 0.3m pipes directly connected to the approved rectangular concrete channel. This will increase discharge from the flood storage zone adjacent to the western apron fill to the downstream channels and detention basin.

Developed Case with Flood Mitigation Measures and Impact

Modelled maximum envelope flood depth and elevation are presented in **Figure C1-M1B to C4-M1B** of **Appendix E** for the Developed Case with Flood Mitigation measures for the 1%, 5%, 10% AEP and 1% AEP Climate Change flood events.

Flood elevation differences for the Mitigated Developed versus Base Cases are presented in **Figures D1-M1B to D4-M1B** of **Appendix F** for the 1%, 5%, 10% AEP and 1% AEP Climate Change flood events.

A comparison of the Base Case and Developed Case with Flood Mitigation flood elevation indicates an insignificant localised increase approximately up to 15mm observed in the area adjacent to the apron western boundary during the 1% AEP flood event (refer to **Figure D1-M1B**). Same magnitude increases are observed in the downstream areas in the approved carpark and channels. This increase is not expected to create a significant adverse impact as it is low in magnitude and typically does not change flow velocity regime and flood hazard conditions in the area.

Similarly, during the 1% AEP Climate Change scenario, insignificant localised increases approximately up to 13mm are observed in the area adjacent to the apron western boundary and up to 25mm in the approved Astra Aero Lab carpark downstream of the existing evaporation ponds. This increase is minor in nature with flood velocity and hazard conditions also remain unchanged. As such, it is not expected to create a significant adverse impact.

During the 5% and 10% AEP, flood elevation decreases are typically observed in the vicinity of the apron western boundary and downstream areas.

Further analysis of the flood elevation differences also indicates increases in flood elevation in the existing detention basin upstream of Kinder Way for the 10% and 5% AEP modelled events. The increase is minor in magnitude with flood depths in the basin generally ranging from approximately 0.9m to 1.0m during the base case. The 10% AEP 48mm increase observed in the basin is equivalent to an increase of less than a 6% when compared to the base case flood depth in the basin. A freeboard of approximately 300mm is maintained with the downstream Kinder Way road surface. As such, this increase is not considered to create a significant adverse impact on the detention basin functionality.

Conclusion

A Flood Impact Assessment Report has been prepared for the proposed development at Newcastle Airport, Williamtown NSW.

Based on the assessment undertaken, Northrop's position is that the proposed modifications with implemented flood mitigations measures will not create any significant adverse impacts to flood behaviour in the vicinity of the proposed works and the downstream areas during modelled flood events.

Limitation Statement

Northrop Consulting Engineers Pty Ltd (Northrop) has been retained to prepare this report based on specific instructions, scope of work and purpose pursuant to a contract with its client. It has been prepared in accordance with the usual care and thoroughness of the consulting profession for the use by Newcastle Airport Pty Limited. The report is based on generally accepted practices and standards applicable to the scope of work at the time it was prepared. No other warranty, express or implied, is made as to the professional advice included in this report.

Except where expressly permitted in writing or required by law, no third party may use or rely on this report unless otherwise agreed in writing by Northrop.

Where this report indicates that information has been provided to Northrop by third parties, Northrop has made no independent verification of this information except as expressly stated in the report. Northrop is not liable for any inaccuracies in or omissions to that information.

The report was prepared on the dates shown and is based on the conditions and information received at the time of preparation.

This report should be read in full, with reference made to all sources. No responsibility is accepted for use of any part of this report in any other context or for any other purpose. Northrop does not purport to give legal advice or financial advice. Appropriate specialist advice should be obtained where required.

To the extent permitted by law, Northrop expressly excludes any liability for any loss, damage, cost, or expenses suffered by any third party relating to or resulting from the use of, or reliance on, any information contained in this report.

Document	Register
----------	----------

Rev	Status	Prepared	Approved	Date
А	Draft for Client Review	RB	GB	3 November 2023
В	For Submission	RB	GB	8 November 2023
С	For Submission	RB	GB	27 November 2023

Appendix A – Critical Duration Maps

Leg	jend	
	Cadastre	
CII)	2D Model Extent	
	Buildings	
Stor	m Duration	
	10min	
	15min	
	20min	
	25min	
	30min	
	45min	
	1hr	
	1 5hr	
	2hr	
	3hr	
	4.5hr	
	6hr	
	9hr	
	12hr	
	18hr	
	24hr	
	2	
0	100 200 Metres	
1:7,5	500	
	Figure A	2
	5% AEP Critic	al
	Storm Duratio	ns
	Newcastle Airc	ort
	Williamto	wn
6	NORTHRO	
	Monthho	5

Legend Cadastre 2D Model Extent Buildings Storm Duration 10min 15min 20min 25min 30min 45min 1hr 1.5hr 2hr 3hr 4.5hr 6hr 9hr 12hr 18hr 24hr 100 200 Metres 0 1:7,500 **Figure A3** 10% AEP Critical Storm Durations Newcastle Airport Williamtown NORTHROP

Appendix B – Base Case Flood Maps

Lea	end		
9	Cadactro		
	Buildings		
	Proposed	Terminal	
	Expansion	n	
0	Water Lev	' /el (mAHD)	
Dont	h(m)		
Depi	= 0.02		
	0.02 - 0.1	0	
	0.02 0.1	25	
	0.25 - 0.5	50	
	0.50 - 0.7	⁷ 5	
	0.75 - 1.0	00	
	> 1.00		
0	60	120 Metre	s
			•
1:3,5	00		
			Z
	400/ 45		.
	10% At	P Flood Dept	in n
			20 20
		Dase Cas	ら
		Nowcostle Ale	لىم م
		wewcastie Airpo Williamtov	זינ vn
10 mil			-

Data	Source:	NSW I	_PI -	Cadastre,	Nearmap	- Aerial

Leg	end		
	Cadastre		
	Buildings		
	Proposed	Terminal	
_	Expansion		、 、
• 	Water Lev	el (mahd)
Dept	:h(m)		
	$\leq = 0.02$	0	
	0.10 - 0.2	5	
	0.25 - 0.5	0	
	0.50 - 0.7	5	
	0.75 - 1.0	0	
	> 1.00		
0	60	120 1	Antros
0	80		vieues
1:3,5	00		
	E	liguro	R/
		Iguie Belood D	onth
		and Flev	epin ation
	Climate	e Change	2100
		Base	Case
		Newcastle	Airport
		Willia	mtown
6			012

Appendix C – Developed Case Flood Maps

Leg	end	
	Cadastre	
	Buildings	
	Proposed -	Termina
	Expansior	ı
0	Water Leve	el (mAHD)
Dept	:h(m)	
	<= 0.02	
_	0.02 - 0.10) -
	0.10 - 0.25	2
	0.25 - 0.50	5
	0.30 0.75)
	> 1.00	
0	60	120 Metres
4.0.5	00	
1:3,5	00	
	E	iqure C4
	1% AF	P Flood Denth
		and Elevation
	Climate	Change 2100
	De	eveloped Case
		-
		Newcastle Airport Williamtown
		• • • • • • • • • • • • • • • • • • • •

NORTHROP

Appendix D – Pre-to-Post Comparison Developed Case

Legend
Cadastre
2D Model Extent
Expansion
Buildings
Difference(m)
<-0.10
-0.050.03
-0.030.01
Less than +/-10mm
0.01 - 0.03
0.05 - 0.10
>0.10
0 60 120 Metres
1:3,500
Eigura D2
5% AFD Flood
Elevation Difference
Developed minus
Base Case
Newcastle Airport

Cadastre, Nearmap - Aeria Source:

Leg	end	
	Cadastre	Evtopt
	Proposed T	Terminal
	Expansion	
Diffe	Buildings erence(m)	
	<-0.10	
	-0.100.0)5)3
	-0.030.0)1
	Less than	+/-10mm
	0.01 - 0.03)
	0.05 - 0.10)
	>0.10	
0	60	120 Metres
1:3,5	00	
	F	igure D3
	1(0% AEP Flood
	Elevati Dev	on Difference
	201	Base Case
		Nowcostla Airport
		Williamtown
1.1	NOD	TUDOD

Legend	
Cadastr	е
2D Mod	lel Extent
FIT Propose	ed Terminal
Expansi	ion
Building	js
Difference(m	ı)
<-0.10	
-0.10 -	-0.05
-0.05 -	-0.03
-0.03 -	-0.01
Less that	an +/-10mm
0.01 - 0).03
0.03 - 0).05
0.05 - 0	0.10
>0.10	
0 60	120 Metres
1:3.500	
	Figure D4
1% AFP	Climate Change
	2100 Sensitivity
	Flood Elevation
	Difference
[Developed minus
	Base Case
	Newcastle Airport
	Williamtown
	DTUDOD

Appendix E – Developed Case with Mitigation Measures Flood Maps

_eg	end	
	Cadastre	
0	Water Level (m	AHD)
	Buildings	
	Proposed Term	inal
	Expansion	
Dept	th(m)	
	<= 0.02	
	0.02 - 0.10	
	0.10 - 0.25	
	0.25 - 0.50	
	0.50 - 0.75	
	0.75 - 1.00	
	> 1.00	
)	60	120 Metres
1:3,5	00	
	Eiguro Ca	
	rigule Ca	
	10% AEP FI0	od Depth
	and	Elevation
	with Flood I	witigation

Newcastle Airport Williamtown

ata Source Cadastre, Nearmap - Aeria

rmap - Aeria Cadastre, N

Leg	lend	
	Cadastre	
0	Water Level (mAHD)
	Buildings	
•••	Proposed Terminal	
Dent	Expansion	
Dept	tn(m)	
	<= 0.02 0.02 - 0.10	
	0.10 - 0.25	
	0.25 - 0.50	
	0.50 - 0.75	
	0.75 - 1.00	
	> 1.00	
0	60 120	Metres
1:3,50	00	
	Figure C4-N	11B
	1% AEP Climate Ch	nange
Flo	ood Depth and Elev	ation
	Developed with Flood Mitic	Lase
		jation
	•••	
	Newcastle Willia	Airport
	NORTHR	OP

Appendix F – Pre-to-Post Comparison Developed Case with Mitigation Measures

Legend Cadastre 2D Model Extent Proposed Terminal Expansion Buildings Difference(m) <-0.10 -0.10 - -0.05 -0.05 - -0.03 -0.03 - -0.01 Less than +/-10mm 0.01 - 0.03 0.03 - 0.05 0.05 - 0.10 >0.10 70 140 Metres Λ 1:4,000 Figure D1-M1B 1% AEP Flood **Elevation Difference Developed with Flood** Mitigation munus Base Case

Newcastle Airport Williamtown

ata Source: Cadastre, Nearmap - Aeria

Legend Cadastre 2D Model Extent **FINITIAN** Proposed Terminal Expansion Buildings Difference(m) <-0.10 -0.10 - -0.05 -0.05 - -0.03 -0.03 - -0.01 Less than +/-10mm 0.01 - 0.03 0.03 - 0.05 0.05 - 0.10 >0.10 70 140 Metres 0 1:4,000 Figure D2-M1B 5% AEP Flood **Elevation Difference** Developed with Flood Mitigation minus Base Case

Newcastle Airport Williamtown

ata Source: Cadastre, Nearmap - Aeria

Legend Cadastre 2D Model Extent Proposed Terminal Expansion Buildings Difference(m) <-0.10 -0.10 - -0.05 -0.05 - -0.03 -0.03 - -0.01 Less than +/-10mm 0.01 - 0.03 0.03 - 0.05 0.05 - 0.10 >0.10 70 140 Metres Λ 1:4,000 Figure D3-M1B 10% AEP Flood **Elevation Difference** Developed with Flood Mitigation misus Base Case

Newcastle Airport Williamtown

Legend Cadastre 2D Model Extent **FINITIAN** Proposed Terminal Expansion Buildings Difference(m) <-0.10 -0.10 - -0.05 -0.05 - -0.03 -0.03 - -0.01 Less than +/-10mm 0.01 - 0.03 0.03 - 0.05 0.05 - 0.10 >0.10 70 140 Metres Λ 1:4,000 Figure D4-M1B 1% AEP Climate Change Flood Elevation Difference Developed with Flood Mitigation minus Base Case Newcastle Airport Williamtown

Appendix G – Modelled Burst and Pre-Burst Rainfall Depths

Table G1 – BoM Rainfall Depth(mm)

Duration	63.20%	50%	20%	10%	5%	2%	1%
1	2.2	2.54	3.67	4.49	5.35	6.57	7.57
2	3.7	4.29	6.24	7.63	9.05	11	12.5
3	5.14	5.95	8.63	10.6	12.5	15.2	17.4
4	6.44	7.45	10.8	13.2	15.7	19.1	21.9
5	7.62	8.8	12.7	15.6	18.5	22.7	26
10	12.1	13.9	20.1	24.6	29.3	36.1	41.6
15	15.2	17.5	25.2	30.8	36.8	45.3	52.3
20	17.5	20.1	29	35.6	42.4	52.2	60.3
25	19.3	22.3	32.1	39.4	47	57.8	66.6
30	20.9	24.1	34.8	42.6	50.8	62.4	71.9
45	24.4	28.2	40.9	50.1	59.7	73.2	84.1
60	27.1	31.3	45.4	55.7	66.3	81.2	93.3
90	31.1	36.1	52.4	64.2	76.4	93.5	107
120	34.3	39.8	57.8	70.9	84.3	103	118
180	39.4	45.6	66.3	81.4	96.9	119	136
270	45.4	52.5	76.3	93.7	112	137	158
360	50.4	58.2	84.4	104	124	152	176
540	58.6	67.5	97.6	120	144	178	206
720	65.3	75.1	108	133	160	198	230
1080	76	87.1	125	155	186	231	269
1440	84.5	96.6	139	171	207	257	299
1800	91.5	104	150	185	224	278	323
2160	97.4	111	159	197	238	295	343
2880	107	122	174	215	260	322	373
4320	120	137	195	241	291	357	412
5760	129	147	209	258	310	379	434
7200	136	155	219	269	323	393	448
8640	142	161	227	278	332	402	457
10080	146	166	233	284	338	408	463

min (h)\ AEP (%)	50	20	10	5	2	1
60 (1.0)	7.4	8.3	7.8	8.3	6.8	9.9
90 (1.5)	6.6	7.6	7.1	8	6.8	11.5
120 (2.0)	6.6	8	7.3	8.2	6.8	11.3
180 (3.0)	5.6	7.8	7.3	8.2	6.6	11
360 (6.0)	7	9.3	9.7	8.9	7.8	10.4
720 (12.0)	5.6	7.9	8.4	8.2	8.1	9.8
1080 (18.0)	4.8	7.5	7.9	7.8	7.2	9.1
1440 (24.0)	4.3	6.8	7	7.4	5.3	8.7
2160 (36.0)	2.8	5.2	5.3	6.2	5.5	7.9
2880 (48.0)	1.5	3.6	4.4	5.4	4.9	7.6
4320 (72.0)	0	1.4	3	4.3	4.1	6.2

	~	D (11 1		D		D (1 (,
I able	G2 - ARR	Data Hub.	Iransformational	Pre-burst	Rainfall	Depth(mm)
						(•••••

Appendix H – Mitigation Options

MITIGATION OPTION 1 APRON EXPANSION PROJECT, WILLIAMTOWN, N.S.W. 2318 CONCEPT DESIGN

REVISION A	DESCRIPTION ISSUED FOR INFORMATION	ISSUED JB	VER'D JB	APP'D AB	DATE 21.11.23	CLIENT Newcastle Airport	
						DRAWING NOT TO BE USED FOR CONSTRUCTION THE COPYR UNLESS VERIFICATION SIGNATURE HAS BEEN ADDED NORTHRO	lGF 2P

DRAWING SHEET SIZE = A1

MITIGATION OPTION 2 APRON EXPANSION PROJECT, WILLIAMTOWN, N.S.W. 2318 CONCEPT DESIGN

REVISION	DESCRIPTION	ISSUED	VER'D	APP'D	DATE	CLIENT	
A	ISSUED FOR INFORMATION	JB	JB	AB	21.11.23	Newcastle Airport	
						DRAWING NOT TO BE USED FOR CONSTRUCTION THE COP UNLESS VERIFICATION SIGNATURE HAS BEEN ADDED NORTH	YRIGH IROP I

